An investigation into natural vibrations of fluid–structure interaction systems subject to Sommerfeld radiation condition
نویسنده
چکیده
A fluid–structure interaction system subject to Sommerfeld’s condition is defined as a Sommerfeld system which is divided into three categories: Fluid Sommerfeld (FS) System, Solid Sommerfeld (SS) System and Fluid Solid Sommerfeld (FSS) System of which Sommerfeld conditions are imposed on a fluid boundary only, a solid boundary only and both fluid and solid boundaries, respectively. This paper follows the previous initial results claimed by simple examples to further mathematically investigate the natural vibrations of generalized Sommerfeld systems. A new parameter representing the speed of radiation wave for generalized 3-D problemswithmore complicated boundary conditions is introduced into the Sommerfeld condition which allows investigation of the natural vibrations of a Sommerfeld system involving both free surface and compressible waves. Themathematical demonstrations and selected examples confirm and reveal the natural behaviour of generalized Sommerfeld systems defined above. These generalized conclusions can be used in theoretical or engineering analysis of the vibrations of various Sommerfeld systems in engineering.
منابع مشابه
Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملSize-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition
Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...
متن کاملInteraction of laminar natural convection and radiation in an inclined square cavity containing participating gases
Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...
متن کاملInvestigation on thermal behavior of common types of roofs in buildings using computational fluid dynamics method
In this study, the influence of type and structure of different roofing systems were investigated using computational fluid dynamic method. The considered roofing systems include beam and block types (clay brick, light weight concrete block, polystyrene) and Uboot slab which were designed for 6m and 8m span. To simulate the fluid flow and heat transfer, the computational fluid dynamic method wa...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کامل